Bakelite

 

 

Bakelite or polyoxybenzylmethylenglycolanhydride was the first plastic made from synthetic components. It is a thermosetting phenol formaldehyde resin, formed from a condensation reaction of phenol with formaldehyde. It was developed by the Belgian-American chemist Leo Baekeland in Yonkers, New York, in 1907.
Baekeland filed a substantial number of patents in the area. Bakelite, his "method of making insoluble products of phenol and formaldehyde," was filed on July 13, 1907, and granted on December 7, 1909. Baekeland also filed for patent protection in other countries, including Belgium, Canada, Denmark, Hungary, Japan, Mexico, Russia, and Spain. He announced his invention at a meeting of the American Chemical Society on February 5, 1909.
In 1939, the companies were acquired by Union Carbide and Carbon Corporation. In 2005, Union Carbide's phenolic resin business, including the Bakelite and Bakelit registered trademarks, were assigned to Hexion Inc. On the 1st of April, 2019 Hexion filed for Chapter 11 bankruptcy.
Bakelite's molding process had a number of advantages. Bakelite resin could be provided either as powder, or as preformed partially cured slugs, increasing the speed of the casting. Thermosetting resins such as Bakelite required heat and pressure during the molding cycle, but could be removed from the molding process without being cooled, again making the molding process faster. Also, because of the smooth polished surface that resulted, Bakelite objects required less finishing. Millions of parts could be duplicated quickly and relatively cheaply.
The earliest commercial use of Bakelite in the electrical industry was the molding of tiny insulating bushings, made in 1908 for the Weston Electrical Instrument Corporation by Richard W. Seabury of the Boonton Rubber Company. Bakelite was soon used for non-conducting parts of telephones, radios and other electrical devices, including bases and sockets for light bulbs and electron tubes (vacuum tubes), supports for any type of electrical components, automobile distributor caps and other insulators. By 1912, it was being used to make billiard balls, since its elasticity and the sound it made were similar to ivory.
During World War II, Bakelite buttons were part of the British uniforms. They were sometimes modified to Survival, Evasion, Resistance and Escape purposes in case of capture. "Following the introduction of BD (Battle Dress). MI9 was forced to adapt to meet the challenge of a number of different compass solutions were devised, both covert and overt. These included Bakelite buttons used in both Army (brown colored) and RAF (black) BD uniforms."
By the late 1940s, newer materials were superseding Bakelite in many areas. Phenolics are less frequently used in general consumer products today due to their cost and complexity of production and their brittle nature. They still appear in some applications where their specific properties are required, such as small precision-shaped components, molded disc brake cylinders, saucepan handles, electrical plugs, switches and parts for electrical irons, as well as in the area of inexpensive board and tabletop games produced in China, Hong Kong and India. Items such as billiard balls, dominoes and pieces for board games such as chess, checkers, and backgammon are constructed of Bakelite for its look, durability, fine polish, weight, and sound. Common dice are sometimes made of Bakelite for weight and sound, but the majority are made of a thermoplastic polymer such as acrylonitrile butadiene styrene (ABS). Bakelite continues to be used for wire insulation, brake pads and related automotive components, and industrial electrical-related applications. Bakelite stock is still manufactured and produced in sheet, rod and tube form for industrial applications in the electronics, power generation and aerospace industries, and under a variety of commercial brand names.